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1 Loewner evolution: notation

If γ : [0,∞) → H is a continuous curve with no transversal self-intersections (“non self-crossing”),
and γ(0) ∈ R, write Ht for t ≥ 0 for the unbounded connected component of H \ γ([0, t]). Set
Kt := H \Ht, the “hull” generated by γ([0, t]).

For each t ≥ 0, ∃ a unique conformal isomorphism

gt : Ht → H

(the “mapping out function”) such that gt(z) = z+ at

z +O( 1
z2 ) as z → ∞, where at is the so-called

half-plane capacity of Kt. This is strictly increasing in t so we may assume that γ is parametrised
such that at = 2t for t ≥ 0 (the half-plane capacity parameterisation).

Then we can define the driving function

ξt := gt(γ(t))

(defined by a limit) and Loewner’s theorem says that ξ is a continuous real-valued function, and
for all z ∈ H,

∂tgt(z) =
2

gt(z)− ξt
dt ; ∀ t ≤ τz := sup{s : gs(z) ∈ H.} (1)

We also set
Zt(z) := gt(z)− ξt;

the centered Loewner flow.
Loewner’s theorem also has a converse which allows one, given a continuous real valued function

(ξt)t≥0, to define a family of locally-growing compact H-hulls (Kt)t≥0, the “Loewner chain”, and
associated conformal maps gt : H \Kt → H such that (1) holds. It is not necessarily the case that
(Kt)t≥0 is generated by a curve (γ(t))t≥0.

2 The critical, non-massive case

2.1 Schramm–Loewner evolution (SLE)

For κ > 0, SLEκ in H from 0 to ∞, is the (random) Loewner chain with driving function

ξt :=
√
κBt

for B a standard linear Brownian motion. It has been shown that it is generated by a curve almost
surely for all values of κ > 0.

1



Scale/conformal invariance Let γ be a non-self crossing curve in the half-plane parameterisa-
tion, and for a > 0 define (γ̃(t))t≥0 = (aγ( t

a2 ))t≥0. Then one can check that g̃t : z 7→ agt/a2(z/a)
is a conformal isomorphism sending the unbounded connected component of H \ γ̃([0, t]) to H, and
has g̃t(z) = z + 2t/z + O(1/z2) as z → ∞. This means that the driving function (ξ̃t)t≥0 of γ̃ is

given by ξ̃t = g̃t(γ̃(t)) = agt/a2(γ(t)) = aξt/a2 for t ≥ 0.
So, if γ is an SLEκ for some value of κ, then the scaled curve γ̃ has the same law as γ, by Brownian

scaling. In other words, SLEκ is scale invariant. Conversely, if a random non-self crossing curves
from 0 to ∞ in H is scale invariant, then its driving function satisfies Brownian scaling.

Scale invariance also allows us to unambiguously define the law of SLEκ in any simply connected
domain D between two marked boundary points a and b. It is defined to be the conformal image
of SLEκ from 0 to ∞ in H under (any) conformal isomorphism sending H to D, 0 to a and ∞ to b.

Markov property Again, let γ be a non-self crossing curve in the half-plane parametrisation
and for s > 0 define (γs(t))t≥0 = gs(γ(s + t))t≥0 and (γ̃s(t))t≥0 = γs(t) − ξs so that γ̃s(0) = 0.
If gst is the mapping out function of γs at time t, then one can check that gst ◦ gs is a conformal
isomorphism from H \ γ([0, t+ s]) to H, with z 7→ z + 2(t+ s)/z +O(1/z2) as z → ∞. Therefore,
by uniqueness, we have gst ◦ gs = gt+s, i.e. gst = gt+s ◦ g−1

s for t ≥ 0. This means that the driving
function of γs is given by ξs(t) = gst (γ

s(t)) = gs+t(γ(t+ s)) = ξs+t. Since g̃s(z) = gs(z + ξs)− ξs,
the driving function of γ̃s is given by ξ̃st = ξs+t − ξs for t ≥ 0.

So, by the Markov property of Brownian motion, if γ is an SLEκ curve for some κ > 0, then for
any s > 0, γ̃s is independent of γ([0, s]), and has the same law.

Characterisation Combining the above two paragraphs implies the following. For any κ > 0,
SLEκ defines a family µD,a,b of laws on non-crossing curves in simply connected domains D from
a boundary point a to a boundary point b, which is conformally invariant and satisfies a Markov
property. More precisely:

(CI) if φ : D → D′ is a conformal isomorphism sending a → a′ and b → b′ then if γ ∼ µD,a,b then
φ(γ) ∼ µD′,a′,b′ ; and

(MP) if γ ∼ µD,a,b, then conditionally on some an initial portion γ([0, s]) of γ, (γ(s + t))t≥0 ∼
µD\γ([0,s]),γ(s),b.

Conversely, if any such family of laws satisfies (CI) and (MP) then there exists κ > 0 such that
µD,a,b is the law of SLEκ from a to b in D for every D, a, b.

Scaling limits This is why Oded Schramm introduced SLE: this characterisation makes them
the only possible candidates for scaling limits of certain interfaces in statistical mechanics models
at their critical point, which are at least conjectured to satisfy (CI) and (MP). For example,
critical percolation, critical Ising model, critical FK cluster model etc. with Dobrushin boundary
conditions.

2.2 Conformally covariant martingale observables

Problem: it’s usually pretty hard to show conformal invariance of the limiting interfaces (even if
there are convincing arguments in the physics literature).
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Idea: one successful idea that is present in many works by now, but outlined for example in
Smirnov’s ICMS proceedings article, is that proving one observable converges and satisfies analogues
of (CI) and (MP) in the limit (for every possible configuration D, a, b) can be enough to identify
a scaling limit.

Example: Percolation Take site percolation on the an ε-scale triangular lattice approximation
Dε to a domain D with two marked boundary points a and b, and open boundary conditions on
the clockwise arc ab, closed boundary conditions on the anti-clockwise arc ba. Denote its law by Pε

and let γε be the interface from a to b (living on the hexagonal lattice) that keeps open vertices to
its left and closed vertices to its right. For x on the arc ab and y on the arc ba, set

pε(D, a, x, b, y) = Pε( there exists an open cluster from ax to by in Dε).

It is not too hard to see that this is the same as the probability that γε hits the arc by before bx.
Moreover, given γε([0, s]) for some s (in some time parametrisation), the conditional probability of
an open cluster joining ax to by is just the probability that (γε(t+ s))t≥0 hits by before bx, if it has
not already done so. This in turn is the probability that there is an open cluster in Dε \ γε([0, s])
joining the arc γε(s)x to by. That is,

Pε( there exists an open cluster from ax to by in Dε | γε([0, s]))
= Pε( there exists an open cluster from γε(s)x to by in Dε \ γε([0, s]). (2)

Now, it is actually possible to prove that

pε(D, a, x, b, y) → p(D, a, x, b, y)

as ε → 0 for any D, a, b, x, y, where p is an explicit function (in some domain) that is conformally
invariant. Putting this together with (2) implies that

p(D \ γ([0, t]), γ(t), b, x, y) is a martingale

for any scaling limit γ of γε (from a to b in D) as ε → 0, and any D, a, b, x, y. Indeed, if Fs =
σ(γ(u);u ≤ s) for s > 0 then for t ≥ s

E[p(D \ γ([0, t]), γ(t), x, b, y)|Fs] = lim
ε→0

Eε(Pε( there exists an open cluster from ax to by in Dε|Ft)|Fs))

= lim
ε→0

Eε(Pε( there exists an open cluster from ax to by in Dε)|Fs))

= p(D \ γ([0, s]), γ(s), x, b, y)

as required.
In particular, if γ is the scaling limit of a percolation interface from 0 to ∞ in H then

p(H \ γ([0, t]), γ(t), x,∞, y) = p(H, 1− gt(x)− ξt
gt(x)− gt(y)

, 1,∞, 0) = F (
gt(x)− ξt

gt(x)− gt(y)
)

is a martingale (the equality coming from conformal invariance applying the map z 7→ (gt(z) −
gt(y))/(gt(x)− gt(y))), where

F (u) := p(H, 1− u, 1,∞, 0)

is Cardy’s hypergeometric function. The explicit form of F then allows one to conclude that the
driving function of γ, ξ, must be equal to

√
6 times a standard Brownian motion. This can be

deduced using stochastic calculus, or more directly, just using Taylor expansion, by proving that ξt
is a martingale with quadratic variation 6t.
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General case F (D, a, b, c, . . . ) is a conformally covariant martingale for SLEκ if

F (D, a, b, c, . . . ) = F (ϕ(D), ϕ(a), ϕ(b), ϕ(c), . . . )ϕ′(b)βϕ′(c)γ . . .

for some exponents β, γ, . . . and

F (D \ γ([0, t]), γ(t), b, c, . . . )

is a martingale. It is conformally invariant if all of the exponents β, γ, . . . vanish. In particular,
this means that F (H, 0,∞, gt(x)− ξt, . . . )g

′
t(x)

β . . . is a martingale for SLEκ in H from 0 to ∞.
If one can identify a discrete martingale for interfaces in some lattice model, and prove that it

has a conformally covariant martingale in the scaling limit, of the form F above with F explicit,
then there is hope to uniquely identify the limiting curve as an SLE (using similar techniques to in
the percolation case).

There are various ways to try and do this, for example:

• start with a discrete object (related to some kind of probability) that has the martingale
property built in, and try to establish conformal covariance in the limit;

• start with a discretisation of something that is an SLE martingale (see example below), and
try to prove the discrete martingale property by connecting it to something in the lattice
model.

Example: BVP For κ > 0

Mκ,β,σ
t = Zt(z)

βZ ′
t(z)

σ with σ = β +
β(β − 1)

4
κ

is a holomorphic martingale for SLEκ in H from 0 to ∞ (solution of a Riemann-Hilbert problem in
Ht).

It is (dz)σ-covariant. To see that this is a martingale, note that

Z ′
t(z) :=

∂

∂z
Zt(z) =

∂

∂z

(
z +

∫ t

0

Zs(z)

d
s+ ξt

)
= 1−

∫ t

0

2Z ′
s(z)

Zs(z)2
ds

so

dZ ′
t(z) = −2Z ′

t(z)

Zt(z)2
dt.

Itô’s formula gives

d(Z ′
t(z)

σ) = −2σ
2Z ′

t(z)
σ

Zt(z)2
dt

and

d(Zt(z)
β) = βZt(z)

β−1(
2

Zt(z)
dt−

√
κdBt)+

1

2
κβ(β−1)Zt(z)

β−2dt = Zt(z)
β−2(2β+

κβ(β − 1)

2
)dt−

√
κβZt(z)

β−1dBt

and therefore, since Z ′
t(z)

σ is of bounded variation,

dMκ,β,σ
t (z) = Z ′

t(z)
σZt(z)

β−2(2β − κβ(β − 1)

2
− 2σ)dt− Z ′

t(z)
σ
√
κβZt(z)

β−1dBt.
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The drift term indeed vanishes if σ = β + (κ/4)β(β − 1). Conversely, one can show that if an

appropriately nice random curve has Mκ,β,σ
t as a martingale, then the curve must be an SLEκ.

Another example of a martingale for SLEκ is

Mκ
t (z) = logZt(z) + (1− κ

4
) logZ ′

t(z)

or its imaginary part Mκ
t (z) = argZt(z) + (1− κ/4) argZ ′

t(z) which satisfies

∆Mκ
t (z) = 0 in Ht ; Mκ

t (x) = argZt(x) + (1− κ/4) argZ ′
t(x) on ∂Ht.

Question: M-S seems to suggest that these are the only holomorphic martingale observables
for SLEκ. To what extent is this true?!

3 The massive case

Two approaches to massive SLE

• Generalise the holomorphic martingale observables above to massive versions: i.e. satisfying

∂̄M
(m),κ,β,σ
t − imM̄

(m),κ,β,σ
t = 0 or (3)

∆M
(m),κ
t −m2M

(m),κ
t = 0 (4)

in Ht, with the same boundary conditions as in the non-massive case. Here m, the mass, is a
function of z. Then ask, if there is a (unique) random Loewner evolution in H from 0 to ∞
(with driving function =

√
κBt+drift) such that the massive version M

(m),κ,β,σ
t or M

(m),κ
t is

a martingale.

• Consider scaling limits of interfaces in off-critical (massive perturbations of) lattice models,
where the peturbed parameters approach criticality at the correct rate as the mesh size of the
lattice goes to 0, in order to get something non-trivial. These scaling limits should be related
to massive field theories, where the mass is related perturbation.

You can then ask if the two things define the same limiting random curves. For example, if there
is some lattice model for which the discrete interfaces have a discrete version of Mκ,β,σ or Mκ as a
martingale, then it is natural to expect that an appropriate off-critical version of the lattice model
will have an interface scaling limit for which the massive version of Mκ,β,σ or Mκ is a martingale.

Conformal Covariance If (3) or (4) (for some κ, β) is a martingale for some random curve γ in
H from 0 to ∞, then if γ̃(t) = aγ(t) is a scaled version, it is easy to check that (3) or (4) with m
replaced by 1

am( ·
a ) will be a martingale for γ̃. Equivalently, if you take a conformal image φ(γ),

then the analogue of (3) or (4) in φ(Ht) with m replaced by |(φ−1)′|(m ◦φ−1) will be a martingale
for φ(γ).

So suppose that for every (in some sense!) mass there is a unique random curve such that (3)
or (4) (for some fixed κ, β) is a martingale. Call its law µ(m),D,a,b. Then there will be, for each
mass, and each simply connected domain D and marked boundary points a, b, a unique random
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curve from a to b in D such that the analogue of (3) or (4) is a martingale. Call its law µ(m),D,a,b.
Then these laws will satisfy conformal covariance:

if γ ∼ µ(m),D,a,b then φ(γ) ∼ µ(|(φ−1)′|(m◦φ−1)),φ(D),φ(a),φ(b).

This is also expected for scaling limits of off-critical (massive perturbations) of critical lattice
models (in an appropriate sense).

Example Massive harmonic explorer (→ Léonie).

Questions

• Describe the whole range of “massive SLE” such that the massive martingale observables (4)
and (3) are martingales. Are their driving functions always SLE plus drift? Are they always
absolutely continuous with respect to SLEκ for some κ? (Maybe no for κ > 4). Do they
always have the same scaling exponents?

• Prove convergence of off critical lattice interface models to massive SLE. Are these limits
always in the family above?

• Suppose you have a family µ(m),D,a,b of laws on curves for each simply connected domain D,
boundary points a, b, and mass (m) on D (satisfying something?). Can we characterise such
families of laws satisfying conformal covariance (CC) and the Markov property (MP):

(CC) if φ : D → D′ is a conformal isomorphism then

γ ∼ µ(m),D,a,b ⇒ φ(γ) ∼ µ(|(φ−1)′|(m◦φ−1)),φ(D),φ(a),φ(b)

; and

(MP) if γ ∼ µ(m),D,a,b, then conditionally on some an initial portion γ([0, s]) of γ, (γ(s +
t))t≥0 ∼ µ(m),D\γ([0,s]),γ(s),b,

similarly to ordinary SLE? How does this relate to the family in the first question?

• Can we define loop variants of massive SLE? Can they be characterised similarly to ordinary
CLE?
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