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1. Introduction

Important properties of SLE

• Conformal invariance
• Markov property

Figure 1. Basic SLE properties

The objective:

• Describe what the Markov property means in the setting of CLE
• Characterise an one-parameter family of loops that “locally looks like”
SLE’s but are closed loops. Once again, this family should describe certain
interfaces of critical models in statistical mechanics. Notice that we are
describing the whole family, not a single interface (like in SLE).
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CLE: “random collections of loops that combine conformal invariance and a
natural restriction properties (motivated by the fact that the discrete analog of this
property trivially holds for the discrete models we have in mind).”

Figure 2. A CLE depiction

What we won’t do: Provide its construction via loop soups. To see such
construction in detail, see part 2 of [2]. We will also come back to this when we
look at [1].

The quick idea is that we sample a collections of loops according to a Poisson
point process in the space of Loops according to some intensity measure related to
the Brownian Motion. Then, we consider the clusters formed by loops that intersect
each other. Finally, we look at the topological boundary of the infinite connected
component obtained by removing all loops in a given cluster from R2. This will
give us one loop for the CLE configuration.

Figure 3. Loop soup construction of CLE

In particular, we will not prove the following theorem:

Theorem 1.

• For each CLE, there exists a value κ ∈ (8/3, 4] such that with probability
one, all loops of the CLE are SLEκ-type loops.

• Conversely, for each κ ∈ (8/3, 4], there exists exactly one CLE with SLEκ

type loops.
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This theorem is proved as

(1) Uniqueness of the CLE: this uses the Markovian property and SLE argu-
ments

(2) Existence of the CLE: this is the construction via loop soups.

We will look at the first part of the argument.
Although the conformal invariance has a clear analogue in the case of CLE, how

does we set an analogue of the Markov property? We do not have a “past of the
path” any more.

2. Proper definitions

Γ = (γj , j ∈ J): Random families of non-nested simple disjoint loops in
simply connected domains.
D: simply connected - let PD denote the law of this loop-ensemble in D.
Non-triviality: there exists at least one loop almost surely.
Conformally invariance: if for any two simply connected domains D and D′

(which are not equal to the entire plane) and conformal transformation ψ : D → D′,
the image of PD under ψ is PD′ .

Local finiteness assumption: if D is equal to the unit disc U, then for any
ε > 0, there are PU almost surely only finitely many loops of radius larger than ϵ
in Γ.

Restriction property: D1 ⊂ D2: simply connected domains. Sample a family
(γj , j ∈ J) according to PD2 . Then, we can subdivide the family Γ = (γj , j ∈ J)
into two parts:

• (γj , j ∈ J1) stay in D1. Let Γ
′ = Γ \ (γj , j ∈ J) \ (γj , j ∈ J1)

• Let D∗
2 = D \ (Γ′ ∪ int Γ′. We say that the family PD satisfies restriction if,

for any such D1 and D2, the conditional law of (γj , j ∈ J) given D∗
1 is PD∗

1

(product of PD for each connected component D of D∗
1).

Figure 4. Restriction property

CLE = NT + CI + LF + RP.

Remark 2 (Full/nested CLE). Thanks to the CI, we can construct embedded a
CLE inside each loop of the CLE. Then by iterating this process infinitely, we have
the full CLE/nested CLE.
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This type of family is given by studying all interfaces of a statistical mechanics
model, rather than only the outermost ones.

Remark 3 (Bubble measure). The relation with SLE can be made formal by looking
at the so called “bubble measure”. That is, for z ∈ H (due to CI, we can do this in
any other domain), we look at the measure obtained by the limit of the law of the
unique loop that surrounds z conditioned that such loop intersects a ε-neighbourhood
of the origin. It turns out that this measure can be obtained via a limit of measures
of SLEκ curves for κ ∈ (8/3, 4] and such measures are distinct from each other.
The existence of γ(z) will be discussed in the next section.

Before we proceed, we will just fix some notation.

• D: domain which is not the full plane;
• L: space of simple loop families contained in D;
• Σ: σ-field generated by events [O ⊂ int(γ)] where O is an open set. This is
the same as the σ-field generated by [x ∈ int(γ)] where x spans a countable
and dense set.

• Γ = (γj , j ∈ J) (at most countable) collection of simple loops. Let

µΓ =
∑
j∈J

δγj
.

We can then look at σ-field generated by [Γ : µΓ(A) = k] where A ∈ Σ and
k ≥ 0.

3. Basic Properties

Lemma 4. Then, for any given z ∈ U, there almost surely exists a loop γj in Γ
such that z ∈ int(γj).

Proof. Define u = u(z) to be the probability that z is in the interior of some loop
in Γ. By Moebius invariance, this quantity u does not depend on z.

Furthermore, since P (J ̸= ∅) > 0, it follows that u > 0 (otherwise the expected
area of the union of all interiors of loops would be zero). Hence, there exists
r ∈ (0, 1) such that with a positive probability p, the origin is in the interior of
some loop in Γ that intersects the slit [r, 1] (we call A this event).

We now define U = U\ [r, 1) and apply the restriction property. If A holds, then
the origin is in the interior of some loop of Γ. If A does not hold, then the origin
is in one of the connected components of Ũ and the conditional probability that it
is surrounded by a loop in this domain is therefore still u. Hence, u = p+ (1− p)u
so that u = 1. □

Corollary 5. J is almost surely infinite.

Proof. Almost surely, all the points 1 − 1/n, n ≥ 1 are surrounded by a loop, and
any given loop can only surround finitely many of these points (because it is at
positive distance from ∂U). □

Lemma 6. Let M(θ) denote the set of configurations Γ = (γj , j ∈ J) such that for
all j ∈ J , the radius [0, eiθ] is never locally “touched without crossing” by γj (in
other words, θ is a local extremum of none of the arg(γj)’s). Then, for each given
θ, Γ is almost surely in M(θ).
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Lemma 7. For any r < 1, the probability that rU is entirely contained in the
interior of one single loop is positive.

Proof. This is because each simple loop γ that surrounds the origin can be approx-
imated “from the outside” by a loop η on a grid of rational meshsize with as much
precision as one wants. This implies in particular that one can find one such loop
η in such a way that the image of one loop γ in the CLE under a conformal map
from int(η) onto U that preserves the origin has an interior containing rU. Hence,
if we apply the restriction property to U = int(η), we get readily that with positive
probability, the interior of some loop in the CLE contains rU. Since this property
will not be directly used nor needed later in the paper, we leave the details of the
proof to the reader. □

Lemma 8. The restriction property continues to hold if we replace the simply
connected domain U ⊂ U with the union U of countably many disjoint simply
connected domains Ui ⊂ U. That is, we still have that the conditional law of
(γj , j ∈ J∗) given U∗ (or alternatively given the family (γj , j ∈ I)) is PU∗ .

Proof. To see this, note first that applying the property separately for each Ui gives
us the marginal conditional laws for the set of loops within each of the Ui. Then,
observe that the conditional law of the set of loops in Ui is unchanged when one
further conditions on the set of loops in ∪i′ ̸=iUi′ . Hence, the sets of loops in the
domains U∗

1 , . . . , U
∗
i , . . . are in fact independent (conditionally on (γj , j ∈ I)). □

4. Explorations!

In order to understand the CLE configuration in a “Markovian way”, we will
discuss a procedure of explorations of loops. Let us focus on the case of the domain
D = U.

An exploration will be obtained by iterating a process. First, we will fix a param-
eter ε > 0 small. Then, we select some form of “target” for when the exploration
should stop. At each step j, we select a value (randomly or deterministically)
yj ∈ ∂U and will obtain the set U ′

j,ε = Uj,ε \ Φ−1
j,ε (D(yj , ε)). Then define Uj as a

specific choice of connected component of Uj after removing all of the loops that
do not stay inside of U ′

j .
Then, we define a conformal map Φj,ε : Uj,ε \Uj,ε → U with some constrain (say

Φj,ε(0) = 0 and Φ′
j,ε(0) > 0). We then iterate the process until either we cannot

define Φj,ε or (often equivalent) we have reached our target.
If we reach our target in a finite (random) number Kε of steps, we can even

study properties of ΦKε,ε and take ε→ 0+.

Exploration

Missing

figure

(1) Exploring a fixed set
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(2) Exploring sequence of fixed set
(3) Exploring the loop of γ(0)

• This provides a simpler way to study the “bubble measure”
(4) Chordal exploration on H
(5) Radial exploration on H

5. One-point pinned measures

We can use the third type of exploration we described above to essentially explore
the line [0, 1] “from 1 to 0”.

That is, let
R = max {r ∈ [0, 1], r ∈ γ0} ,

and consider the Û to be the connected component that that includes 0 once we
remove from U the segment [r, 1] and the interior of all loops that intersect it.

Now, consider the exploration of the loop γ(0) (the loop of 0), that is, take yj = 1
for all j and define the Uj to be the connected component of U that contains γ(0).
Then define Φj as the map that maps Uj to U such that Φj(0) = 0 and Φ′

j(0) > 0.
Let N be the random variable that describes the maximum j for which the map
Φj is well defined.

Notice that due to RP and CI, we have that

P(N ≥ n) = P (γ(0) ∩D(1, ε) = ∅)n .
and that ΦN (γ(0)) is distributed according to the conditional law of γ(0) given that
γ ∩D(1, ε) ̸= ∅.

Proposition 9. The exploration procedure of the loop γ(0) given above (ΦN , yN )

converge almost surely to the pair (ŷ−1Φ̂, 1) as ε→ 0.

The let µi be the weak limit of the measure P(γ(i)|γ(i) ∩D(0, ε)) as ε → 0 We
have Let us denote by u(ε) the probability that the loop γ(i) intersects the disc of
radius ε around the origin in a CLE.

• at least for almost all λ sufficiently close to one, the loop that surrounds i
also surrounds iλ and i/λ with probability at least 1/2 under µi, and

• i/λ as well as λi are almost surely not on γ(i) (when λ is fixed).

Let Oi denote the interior of the loop γ(i). We know that

lim
ε→0

P (λi ∈ Oi and γ(i) ∩ Cλε ̸= ∅)
u(λε)

= µi (λi ∈ Oi) .

On the other hand, the scaling property of the CLE shows that when ε→ 0,

P (λi ∈ Oi and γ(i) ∩ Cλε ̸= ∅)
u(λε)

=
P (i ∈ Oλi and γ(λi) ∩ Cλε ̸= ∅)

u(λε)

=
P (i/λ ∈ Oi and γ(i) ∩ Cε ̸= ∅)

u(ε)
× u(ε)

u(λε)

∼ µi (i/λ ∈ Oi)×
u(ε)

u(λε)
.

Hence, for all λ sufficiently close to 1 , we conclude that

f(λ) := lim
ε→0

u(λε)

u(ε)
=
µi (i/λ ∈ Oi)

µi (λi ∈ Oi)
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is well defined. Furthermore, given λ, λ′ and that f (λλ′) = f(λ)f (λ′). and f(λ) →
1 as λ→ 1. Therefore

Proposition 10. There exists β ∈ R such that

f(λ) = λβ .

Corollary 11. u(ε) = εβ+o(1) as ε→ 0+.

Because of scaling, we can now define, for all z = iλ, a measure µz on loops γ(z)
that surround z and touch the real line at the origin as follows:

µz(γ(z) ∈ A) = λ−βµi(λγ(i) ∈ A)

for any measurable set A of loops. This is also the limit of u(ε)−1 times the law of
γ(z) in a CLE, restricted to the event {γ(z) ∩ Cε ̸= ∅}.

Let us now choose any z in the upper half-plane. Let ψ = ψz now denote the
Möbius transformation from the upper half-plane onto itself with ψ(z) = i and
ψ(0) = 0. Let λ = 1/ψ′(0). Clearly, for any given a > 1, for any small enough
ε, the image of Cε under ψ is “squeezed” between the circles Cε/aλ and Caε/λ. It
follows readily (using the fact that f(a) → 1 as a→ 1 ) that the measure µz defined
for all measurable A by

µz(γ(z) ∈ A) = λ−βµi
(
ψ−1(γ(i)) ∈ A

)
can again be viewed as the limit when ε → 0 of u(ε)−1 times the distribution of
γ(z) restricted to {γ(z) ∩ Cε ̸= ∅}.

Finally, we can now define our measure µ on pinned loops.

• A measure (not a probability measure) on simple loops that touch the real
line at the origin and otherwise stay in the upper half-plane (this is what
we call a pinned loop)

• For all z ∈ H, it coincides with µz on the set of loops that surround z.
– Indeed, the previous limiting procedure shows immediately that for

any two points z and z′, the two measures µz and µz′
coincide on the

set of loops that surround both z and z′.
• The requirement that µ coincides with the µz ’s (as described above) fully
determines µ.

• For any conformal transformation ψ from the upper half-plane onto itself
with ψ(0) = 0, we have

ψ ◦ µ = |ψ′(0)|−β
µ.

This is the conformal covariance property of µ. Note that the maps z 7→
−za/(z − a) for real a ̸= 0 satisfy ψ′(0) = 1 so that µ is invariant under
these transformations.

• For each z in the upper half-plane, the mass µ({γ : z ∈ int(γ)}) is finite
and equal to ψ′(0)β , where ψ is the conformal map from H onto itself with
ψ(0) = 0 and ψ(z) = i.

• - For each z in the upper half-plane, the measure µ restricted to the set of
loops that surround z is the limit as ε → 0+ of u(ε)−1 times the law of
γ(z) in a CLE restricted to the event {γ(z) ∩ Cε ̸= ∅}.
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A few things we won’t have time to properly go over. A priori estimates for
the pinned measure. Let us denote the “radius” of a loop γ in the upper half-plane
by

R(γ) = max{|z| : z ∈ γ}

Lemma 12. The scaling exponent β described above lies in (0, 2).

Lemma 13. The µ-measure of the set of loops with radius greater than 1 is finite.

This allows for scaling arguments that check the decay of R(γ). This will be
important to classify exactly which κ is necessary to recover this β.

Points to complete

(1) Two-point pinned loop probability measure
(2) SLEκ bubble measure
(3) From Two-point to SLE
(4) From bubble measure back to CLE
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